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A theoretical model is described of the mean two-dimensional flow of homogeneous charge in 
a flat-bottomed cylindrical tank with radial baffles and six-blade turbine disc impeller. The model 
starts from the concept of vorticity transport in the bulk of vortex liquid flow through the mecha­
nism of eddy diffusion characterized by a constant value of turbulent (eddy) viscosity. The result 
of solution of the equation which is analogous to the Stokes simplification of equations of motion 
for creeping flow is the description of field of the stream function and of the axial and radial velo­
city components of mean flow in the whole charge. The results of modelling are compared with 
the experimental and theoretical data published by different authors, a good qualitative and 
quantitative agreement being stated. Advantage of the model proposed is a very simple schematiza­
tion of the system volume necessary to introduce the boundary conditions (only the parts above 
the impeller plane of symmetry and below it are distinguished), the explicit character of the 
model with respect to the model parameters (model lucidity, low demands on the capacity of 
computer). and. in the end, the possibility to modify the given model by changing boundary 
conditions even for another agitating set-up with radially-axial character of flow. 

The operation of mixing is usually realized in practice in a system illustrated in Fig. I. 
It consists of a stand-up cylindrical vessel of inner diameter Dt with four symmetrically 
located radial baffles of width lb. The vessel has flat bottom, and the liquid level at 
rest reaches height H. In the axis of the vessel there is a six-blade turbine disc impeller 
(Rushton type). The impeller has diameter dm and height h, and the plane of disc 
occurs at the distance H~ from the vessel bottom. By rotating the impeller at fre­
quency n, the turbulent movement of charge is caused in which predominates the 
radial component of mean velocity <wr). With increasing (radial) distance from the 
impeller, the portion of this component of flow turns weak (at the vessel walls reaches 
zero value) and, on the contrary, the proportion of axial component of mean velocity 
<wz) increases. By the action of vessel walls, the liquid flow is then divided into the 
ascending part and the descending part, where the axial component of flow (maximum 
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Studies on Mixing 1889 

value of (wz) in the vicinity of wall) is already quite predominant: Both the parts 
of flowing charge follow afterwards the system boundaries which in addition to the 
vessel wall consist of its bottom and the liquid level (the radial flow is again predo­
minating), to return finally to the impeller (axial flow) and combine again in it. 

When analyzing the hydrodynamics in such systems, three basic regions with 
different character of flow are usually delimited in the volume of agitated charge, 
viz., the rotor region of impeller (the space circumscribed by rotating impeller), 
further the region of stream jet of the liquid streaking from this rotor region, and, 
finally, the remaining charge volume. The liquid flow immediately in the rotor region 
of impeller is investigated experimentally with most difficulties. Simple models as­
sume here the existence of a so-called potential vortex with vortex core (mean velo­
city indirectly and/or directly proportional to radial coordinate). Both theoretically 
and experimentally has been best investigated the region of liquid stream jet leaving 
the rotor region of impeIler.l The mean velocity profile suggests here by its course 
the freqency function of normal distribution with its maximum in horizontal plane 
of impeller symmetry. The radial profile of this maximum then represents a mono­
tonic decreasing function of radial coordinate. The flow is here modelled with success 
as the discharge of submerged jet of liquid from cylindrical tangential nozzle. The 
results of measurement in the remaining volume of agitated charge have then only 
limited possibility of generalization by a form of mathematic model for they are 
conditioned by an actual set-up of model equipment. To make the mathematic 
description easier, different authors divide this remaining volume in different ways 
into subregions which are modelled separately with respect to the found (predo­
minating) character of flow2 • A disadvantage of these methods is the necessity to 
delimit the boundaries of the subregions, which need not be successful without 

FIG. 1 

Sketch of agitated system 
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1890 Ho§taIek. Foit: 

carrying out experiments, and further the difficulties in ensuring the interconnection 
of single separate models. An advantage of these models, unlike the more com­
plicated and apparently also more objective approaches based on numerical solution 
of respective equations of motion\ however, is their explicit character and from it 
following the large lucidity of the model and easy applicability (e.g., to interpolating 
between measured profiles). 

In our paper we will concentrate upon the development of such an explicit model 
of mean flow of charge in system with turbine impeller and baffles which will require 
the dividing of the agitated charge volume only into a minimum number of further 
subregions. Theoretical concept of turbulent flow will be then analogous to the model 
of creeping flow under laminar flow regime, the transport of turbulent vorticity 
being analogous to the diffusion spreading of vorticity in case of laminar flow. This 
concept has been applied with success in case of axial high-speed impellers4 •s. 

THEORETICAL 

In the model system according to Fig. 1, we shall assume the fulfilment of the fol­
lowing simplifying presuppositions: 

(1) The charge is a homogeneous Newtonian liquid, 
(2) the process is isothermal and quasistationary, 
(3) the mean flow is axisymmetric, the liquid stream discharging from the impeller 

is symmetric with respect to the horizontal plane of impeller disc, 
(4) the turbulence intensity is high, the flow may be considered as fully turbulent, 
(5) the vorticity transport takes place mostly by the eddy diffusion mechanism, 
(6) the shape of liquid level is not influenced by its motion, 
(7) the dimensions of laminar sublayer at the interface of liquid-system boundaries 

may be neglected. 

Analogously to the Stokes simplifications of equations of motion for the creeping 
laminar flow6 we can write also for our case 

(1) 

where the linear differential operator E2 takes in cylindrical coordinates the form 

(2) 

The stream function <t/I> is for mean flow defined by the relations 

<Wr> = ! 8<t/I> , 
r 8z 

(3) 
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The boundary conditions of the model are summarized in Fig. 2. 
Here we have illustrated in axial cross section the boundaries of the model agitated 

system represented by the system axis, liquid level, bottom, and wall of agitated 
vessel. An additionally introduced boundary plane is the horizontal axis of symmetry 
of the given turbine impeller which divides the sytem into two parts: The region VI 
under this plane of symmetry and further the region VII which lies above it. The 
basic property of all the boundary surfaces is that they are not passed through with 
the liquid (both the regions are then, from the point of view of mass, closed systems) 
and the stream function (t/I) reaches a constant (zero) value on them. With the 
exception of the separating plane of symmetry of impeller, we do not know the tan-

FIG. 2 
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Regions of modelling and boundary conditions of model. Boundary conditions of region V I: 1 a 
horizontal plane of impeller symmetry «IJI) = 0, (wr ) ~ 0),1 b vessel wall «IJI) = 0, a(wz )/ 

lor = 0), 1c vessel bottom «IJI) = 0, a(wr)/az = 0), 1d system axis «IJI) = 0, a(wz)/ar = 0). 
Boundary conditions of region V II: 2a horiziontal plane of impeller symmetry « IJI) = 0, 
(wr ) ~ 0), 2b vessel wall «IJI) = 0, a(wz)/ar = 0), 2c liquid level «IJI) = 0, a(wr)/az = 0), 
2d system axis «IJI) = 0, a(wz)/ar = 0) 
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1892 Hoiifalek, Foit: 

gential component of velocity of liquid flow, and therefore we content ourselves 
here for our model with introducing a zero gradient of velocity. The knowledge 
of radial profile of the tangent (radial) component of mean velocity is therefore as­
sumed only on the impeller plane of symmetry which is, from the given boundaries, 
the only one accessible to direct experimental investigation (at least in its major part). 
The course of this profile is qualitatively illustrated in Fig. 3. In more detail we shall 
deal with in the part devoted to the model use. 

Up to now we have not treated the question of the origin of coordinates and the 
orientation of axial coordinate z. In usual approach, the origin of coordinates is 
located to the point of intersection of the vessel axis with the bottom plane, the posi­
tive sense of z being considered towards the liquid level. However, to simplify at the 
utmost the formalism of the model solution, the origin of coordinates will be located 
into the horizontal plane of impeller symmetry (the orientation of z axis will be re­
tained). Since both the modelled regions have the same boundary conditions and 
differ practically only in the range of axial coordinate, the solution of model equations 
will be carried out just for one of them (region V II)' and it will be outlined only how 
to apply the model to the remaining part of the system (region V,). 

The solution of Eq. (1) can be divided into two steps. If we introduce an auxiliary 
function (w), the starting differential equation of fourth order can be divided into 
two equations of the second order 

(4a,b) 

By using the method of separation of variables, we can find a (particular) solution 
of Eq. (4a) in the form 

frrJ 

i 

(w) = 2k2r[J1(kr) + A N1{kr)] [D cosh (kz) + E sinh (kz)] , k > 0, (5a) 

~ 3 , 
~rA-~. ______ ~A ______ ~.~ 

I I I 

Flo. 3 

Sketch of the introduction of boundary con­
ditions in horizontal plane of impeller sym­
metry (z = O).!l(r) relation (l5a).!2(r) rela­
tion (l5b),f3(r) relation (l5c),f4(r) relation 
(l5d). f Vortex core, 2 potential vortex, 
3 submerged jet, 4 model complementation 
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where A, D, and E are the integration constants and k is the eigenvalue (characteristics) 
of the problem. Providing that we admit also the solution for k = 0, then the expres­
sion 

<w) = r (r + ;) (2d + 6ez) (5b) 

is also the solution of Eq. (4a), where a, d, e are the integration constants as well. 
By using the method of variation of parameters, the (particular) solution of inhomo­
geneous equation (4b) is found which takes the form 

<1/1) = r[Jl(kr) + A N1(kr)] {B cosh (kz) + C sinh (kz) + 

+ Dkz sinh (kz) + E[kz cosh(kz) - sinh (kz)]} , k> 0 (6a) 

and/or 

(6b) 

In this way we have found out the form of equation describing the mean flow of 
charge under the accepted simplifying conditions. Now it is necessary to confront 
this solution with boundary conditions of the model system. 

Let us consider first a simpler form of solution (6b). By means of the boundary 
conditions in Fig. 2, we find out easily that 

a, b, c, d, e = 0 ; (7) 

when describing the flow in a closed region, this solution consequently does not 
apply. It will be mentioned more closely in the discussion on the model given. Now 
to another variant of solution (6a). If we apply to it homogeneous boundary condi­
tions for function <1/1) in axis of the vessel and at its wall, we find out that 

A=O (8a) 
and 

2 
k i = Ai -, i = 1,2,3, ... 

Dt 

(8b) 

(here )'i is the i-th zero point of transcendent function J 1). It follows from the last 
written condition (8b) that a general solution of our problem (1) will include the 
infinite sequence of solutions (6a), i.e. 

00 

<1/1) = L <1/1 i) , (9) 
i= 1 
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1894 Host!ilek, Foft: 

and we must separately determine the values of remaining integration constants 
B, C, D, and E for each term. To be able to carry out this, we must beforehand 
transform in a suitable way the inhomogeneous boundary condition represented by 
radial profile <wr> in the impeller plane (algebraic function fer) of radial coordinate 
with a finite number of terms). This is ensured by using the Fourier-Bessel expan­
sion 7 

(JOa) 

the coefficients of this series being found in terms of the expression 

(JOb) 

Solution (9) satisfies the boundary conditions for the horizontal plane of the impeller 
symmetry (z = 0) if we put 

Bi = 0 (lla) 

and 

Dt (llb) C·=-F· 
I 2,1,. I' 

I 

On the remaining horizontal boundary surfaces (vessel bottom for region VI and/or 
liquid level for region V'I)' the boundary conditions are satisfied so that 

(12a) 

and 

the axial coordinate of these areas taking the value 
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~ = {H - H; (for region VII) , 

- H; (for region VI)' 
(12e) 

Now we are already able to sum up the solution of Eq. (1) for conditions according 
to Fig. 2, into the resulting relation 

<t/!) (r, z) = .f r 11 (2Ai~) ~ Fi [Sinh (2Ai~) + sinh (2Ai i.). 
1:1 D, 2A; D, D, 

2k ~ cosh (2A. L=....:) - cosh (2A'~) sinh (2A. ~)] 
I DID I DID 

, , , , (13a) 
. ---sinh (2k .l) cosh (2A~-~ ) =--;;~ ~ ._-- . 

'D 'D 'D , , , 

Furthermore, allowing for definition relations (3), we derive easily further relations 
for calculating the mean velocity components, namely 

<Wr ) (r, z) = ~ 11 (2AI~) F; [COSh (2Al.!-.) - sinh ( 2Al i.). 
1-1 D, D, D, 

2A; ~ sinh (2A; ~ - z) - cosh ( 2Al ~ - Z) + cosh (2Ai~) cosh ( 2Ai 3-..)] 
D, D, D, D, D, 

.~. -------- -----

sinh (2A; i.) cosh (2A;.l) - 2A; 1. 
D, D, D, 

(J3b) 

and/or 

<Wz) (r, z) = - J 10 (lAi~) Fl [Sinh (2A;~) + sinh (2;0; i.). 
1-1 D, D, D, 

lA; ~ cosh (2Ai L::.!) - cosh (2Ai i.) sinh (2,1.; ~)] 
D, D, D, D, (l3e) 

sinh (2Ai i.) cosh (lAl i.) - 2Ai i.) . 
D t D t Dt 

Collection Czechoslovak Chem. Commun. [Vol. 52J [1987) 



1896 Hosialek, Foit : 

Use of Model 

To verify our model, we have chosen the set-up of the agitated system according to 
Fig. I which is summarized in Table I. In this configuration, the horizontal plane 
of the impeller symmetry divides the space of agitated system so that the volume 
of region VII is nearly twice compared to region VI' The boundary conditions in the 
plane of impeller z = 0 are based on equations which for the liquid stream leaving 
impeller have been reported by Drbohlav and coworkers 1, i.e., 

(tP> = ex GY/2 (r2 - y2)1/4 tgh (p ;r)' (I4a) 

(wr> = ~ (~y/2 (r2 _l)I/4 [I - tgh2 (p ;r)] , (l4b) 

the parameters ex, p, y taking the following values 

ex = 0'70ndm , p = 11'2, y = 0·68(dm/2). (l4c) 

By inserting the value z = 0 into relations (14), we get the boundary conditions 
corresponding to part 3 of the curve in Fig. 3. The other parts of profile fer) = 
= (Wr> (r, z = 0) are then complemented so as to obtain a continuous curve and si­
multaneously to fulfil the boundary conditions for r = 0 or r = DI /2. In this way we 
obtain the following relations: 

Direct proportionality for the vortex core (part 1) 

fl(r) = - 8 -- ----'!! - y2 ~ r, r E (r = 0; rl = y> , ex ( p )1/2 (d 2 )1/4 d 
2 d! 4 2y2 

(15a) 

hyperbolic dependence for a potential vortex (part 2) 

f2(r) = - 8 - - - y - - , ex ( p )1/2 (d~ 2)1/4 dm 1 

2 d! 4 2 r 
(I5b) 

TABLE I 

Arrangement of the agitated system chosen to verify the model (see Fig. 1) 

1/3 0·367 0·1 1/3 0·75 0·25 0·2 
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for submerged liquid jet (part 3) 

(I5c) 

complementation of the remaining part of profile by a straight line (part 4) 

f (r) = ~ (t)I/2 (r2 _ '\)2)1/4 [(Dt/ 2) - rJ' r E / r ~ dm , r = Dt). (15d) 
4 2 r; 3 f (Dt/2) _ r3 \ 3 2 4 2 

Thus, the boundary between the 1st and 2nd part of profile fer) has been defined 
identically with the radius of cylindrical tangential jet y. Boundary r3 has then been 
defined (an estimate) in the distance of Ib/2 from the vessel wall (r3 = (Dt - Ib)j2). 

Integral in the numerator of relation (lOb) must be written out, on applying these 
conditions, in the following way: 

(I6a) 

where m is in this case equal 4. To prevent difficulties in integration, the situation 
has been further simplified before the calculation itself by approximating the originally 
nonlinear parts of profile (I5b), (I5c) by one and/or four straight-line sections of the 
type 

fk == Pkr + qk' k = 2, 3a, 3b, 3c, 3 (I6b) 

and solving expression (I6a) for 7 straight-line sections of profilef(r). 

RESULTS AND DISCUSSION 

When performing the calculations according to the given model, it is impossible, 
for the obvious reasons, to work with infinite number ofterms in sequences (9)-(13). 
To put it otherwise, the applicability of the obtained solution of equation of motion 
(I) is conditioned by a rapid convergence of these series to the solution sought. 
Further we shall get acquainted with the results which have been obtained on using 
a minicomputer WANG 2200. 

In Fig. 4 the course of the bounary condition of fer) as approximated by seven 
interconnected straight-line sections (broken line) in comparison with the results 
of replacement of this profile (solid line) by means of sequence (10). It can be seen 
that the above-mentioned series renders the initial function fer) comparatively 
closely already on using the first four terms. Mter further increase in the number 
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of terms to double, the error of approximation of the original (in sections straight­
-line) dependence by series (10) may be considered as quite inferior. The parameters 
of this series are then summarized in Table II. Thus, with increasing number of 
employed terms of the theoretical solution, we reach first preciser results, however, 
with increasing values of parameter ki' the problems of numerical nature gradually 
grow - the rounding-off error manifests itself still more strongly, and, finally, the 
error of overflow or underflow of numerical data may appear (with the minicomputer 
WANG 2200, the admissible range is 10-99 to 1099). For the purposes of this paper, 
we shall hereinafter work with the first five terms of solution of Eq. (1). 

TABLED 

Result of the application of boundary conditions of the model 

fir) 
nd;;; 

8 

I 
2 
3 
4 
5 
6 
7 
8 

KI/D;l 

7·66341 
14·03117 
20·34693 
26·64738 
32·94126 
39·23171 
45·52016 
51-80734 

Fi/ndm 

3·31403 
0·89204 
1·58085 
0·12088 
0·42119 

-0·43981 
-0·16055 
-0·35296 

FlO. 4 

Comparison of the course of boundary condi­
tionf(r) in the form of straight lines in parts 
(broken line) with the result offer) expansion 
into the Fourier-Bessel series for different 
number (1, 2, 4, and 8) of terms of this series 
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To verify the correctness of the model presented, the model by Drbohlav and 
coworkers! can again serve, which has already been used when introducing the 
boundary conditions in the horizontal plane of impeller symmetry (z = 0). The 
result of comparison of axial profiles <wr ) and <1/1) for region VII is illustrated in 
Figs 5 and 6. It follows from Fig. 5 that in the liquid stream streaking from the 
rotor region (r = dm /2, Z E <0, h/2»), the model presented exhibits a gentler course 
of quantity <wr ) than the model by Drbohlav and coworkers! but the difference 
in the stream function values according to both models is here lower than 10%. 
Considering that the model presented specifies in no way the axial dimensions of the 
rotor region, this agreement is surprisingly good. In the next part of profile (z > h/2) 
we cannot any more rely upon the model by Drbohlav and coworkers! because this 
part occurs outside the region of liquid stream out of impeller. Further comparison 
of both the models is made possible in Fig. 6. The value of radial coordinate has 
been chosen so that the axial profile <1/1) in agreement with the model presented 

""'-" 
. " ............. '-...... 

O~--------~----~~ __ ---; 

0'2 

<1/1> 
nd3 m 

0·1 ~ 
~{ 

o z=hl2 

o "----O=-'.:..:oS=------I---O;:f.1S 
z/Or 

FIG. 5 

Comparison of results of the calculation of 
axial profile of quantities <wr ) and <If!) 
(region V II, r = dm/2) at the stream from 
rotor region (broken line - model presented, 
solid line - work by Drbohlav and co­
workers l ) 

Collection Czechoslovak Chern. Cornrnun. [Val. 52] [1987] 

2 

or-----------------~~_q 

0'2 

0·1 

o "----""0""0'""S----I..-----:l0.,5 
~/Dt 

FIG. 6 

Comparison of results of the calculation of 
axial profile of quantities <wr ) and <If!) 
in the region VII for rlDt = 0·31 (broken 
line - model presented, solid line - work 
by Drbohlav and coworkers!) 
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should comprise the value of this function being maximum from the point of view 
of the whole agitated system (rlDt == 0·31; <t/I>lnd! == 0·22). Thereby. a pleasant 
finding is that the difference of values < t/I > unlike the results of modelling according 
to Drbohlav and coworkers1 is not again higher than about 10%. The course of 
quantity <wr> as well predicted by both the models exhibits a very good quantitative 
agreement. 

Examples of radial profiles <wz> and <t/I> are given in Fig. 7 (region VII' zlDt = 
= 0·18) and Fig. 8 (region VI' zl Dt = -0·18). The comparison of modelling (broken 
line) with the experimental data by Foft and coworkers8 (points) for a close-to-wall 
flow is in Fig. 7. It follows from the comparison that the model predicts a flatter 
velocity profile here than that given by experiments even though the liquid volumetric 
flow characterized by the maximum of radial profile <t/I> can be for both the cases 
estimated as very close. As to the descending flow in the vicinity of vessel axis, it is 
possible to refer to, e.g., the work by Fort, Hrach, and Obeid9 where much flatter 

2 

o ______ .-.=--.::::--L_ -

0·2 

<,> 
nCP m 

0·, 

FlO. 7 

Comparison of radial profile of quantities 
<wz> and ("'> (region VII. z/Dt = 0·18) by 
the model presented (broken line) with results 
of measurement (e data by Foh and co­
workers8 • solid line - data by Foit and 
coworkers9) 

2 

~i! n m -......... .............. 
....... ...... 
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0·2 

~ --..... " " // \ 
0·\ / .\ 

/ e. \ 
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• 
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FlO. 8 

Comparison of radial profile of quantities 
(wz> and ("'> (region VI. z/Dt = -0·18) 
by the model presented (broken line) with 
the results of experimental determination of 
("'> (e data by FoU and coworkers8 • solid 
line - data by Foit and coworkcrs9) 
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profile of quantity <wz> is reported contrary to the model presented. Similar situation 
may be stated in region Vl'too (see Fig. 8). Let us add to Figs 7 and 8 that the data 
by Fort and coworkers8 ,9 originate from experiments carried out in a vessel of small 
dimensions (D, = 0'29 m) whereas the work of Drbohlav and coworkers l , among 
others, originates in measurements in a large vessel (D, = 1 m). 

The field of stream lines <tfJ>/nd! = const. in agitated system, as predicted by the 
model presented, is illustrated in Fig. 9. 

With regard to a considerable idealization of reality which has enabled us to 
simplify at most the initial equation of the charge vortex flow, we may consider 
the agreement of results of modelling with the results of other authors as good. 
For example, in radial flow in the direction from impeller to the vessel wall, the error 
of calculation, as compared with the quantitative model by Drbohlav and coworkers l, 
is lower than 10%. Rather less favourable is the result of modelling of the axial 
velocity component in the axial flow and/or close-to-wall flow where the model 
presented predicts rather a steeper (for axial flow) and/or flatter (for close-to-wall 
flow) radial profile < w z>' The second case is thereby in relation with the 7th introduced 
presupposition. Even in these regions, however, it is possible to state a good agree­
ment with data of other authors, at least as to the overall flow rate of liquid. Priority 
of the model presented is the simple initial dividing of the model system into two 

FIG. 9 

Results of the calculation of streamline field 
<",>/ni;" = const. in agitated system by the 
model presented 
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regions of cylindrical shape (under and above the horizontal plane of impeller sym­
metry). For example, it is not necessary to specially localize the axial dimensions of 
rotor region of impeller. This property excels especially when comparing with ap­
plication of the very simple model by Fort and coworkers2 which, however, requires 
the division of system altogether to fourteen parts. The boundary conditions of solu­
tion are as well very simple. On most boundary surfaces, the homogeneous boundary 
conditions are namely concerned. Only on the horizontal plane of impeller symmetry, 
which is from greater part easily accessible to measurement, it is necessary to start 
from actual conditions in a system. We have particularly used here the reliable 
model by Drbohlav and coworkers1 describing the whole region of discharge from 
the turbine impeller (the model of submerged liquid jet) which was complemented 
in the remaining parts of this boundary area (rotor region of impeller, close-to-wall 
flow) in terms of simple model concepts. This all have enabled us to obtain the solu­
tion of initial equation for the stream function <t/J) and velocity components <wr ), 

< wz) in an explicit form. Despite the open form of solution (infinite series), the 
application of model is, however, computationally easy to manage owing to a rapid 
convergence of these series. Thus, for practical purpose, we shall undoubtedly be 
able to cope with several first (five to ten) terms of the solution. Ease to realize the 
calculations according to the given model is then a great advantage against the 
implicit models based on a more general form of initial transport equations and 
more realistic boundary conditions (let us name, e.g., the work by Placek3). Thanks 
to substantially lower demands on a computer storage capacity, the model presented 
can be used more easily as a part of wider models describing further processes in agi­
tated system which are immediately conditioned by the hydrodynamics of system. 
The model presented can be applied, on changing the boundary conditions, also to 
other arrangements of agitated system with prevailing axially-radial flow. The 
modelled (cylindrical) region does not have to be closed from the point of view of 
mass transfer. Providing that, e.g., some of bases is passed through with a liquid, 
it is necessary, besides the radial profile <wr), to consider also the profile <wz ) or 
<t/J). Liquid may also flow through some of cylindrical boundaries of the model 
subregion (see, e.g., the division used in work2). In case that the total flow rate 
through some boundary surface is not equal zero, so-called zero terms will have an 
effect in solution, too; here, e.g., represented by formula (6b). As far as constants 
of solution d, e and/or D, E are set equal to zero, we get a description of potential 
flow used, e.g., in work2 or in work10. In case that the profiles of quantities (wr ) 

(or (t/J») and (wz) on some of cylindrical boundary areas should be regarded as 
boundary conditions, it would be necessary to derive the solution in terms of the 
procedure used in works, in which the problem solution was limited to the finding 
of the zero term only of general solution. 
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LIST OF SYMBOLS 

A integration constant 
a integration constant, m2 

B integration constant, m2 s-1 
b integration constant, m s-1 
C integration constant, m2 s - 1 
C integration constant, s-1 
D integration constant, m2 s - 1 
Dt diameter of agitated vessel, m 
d integration constant, m -1 s - 1 
dm impeller diameter, m 
d1 diameter of separating di.,c of turbine impeller, m 
E integration constant, m2 s - 1 

E2 differential operator 
e integration constant, m - 2 S - 1 
F coefficient of Fourier-Bessel expansion, m s - 1 
J(r) course of radial component < Wr> in horizontal plane of impeller symmetry, m s-\ 
H height of liquid in agitated tank, m 
H 2 distance of lower edge of impeller blades from bottom, m 

HZ. distance of impeller disc from bottom, m 
h height of impeller blades, m 
Jy cylindrical (Bessel) function of first kind of index v 
k characteristic number, m- 1 

I length of impeller blade, m 
lb width of radial barne, m 
m number of sections of radial profile of functionJ(r) 
Ny cylindrical function of second kind (Neumann) of index v 
n impeller frequency of revolution, s - 1 

P straight-line slope, s - 1 

q straight-line absolute term, m s - 1 
r radial coordinate, m 
< w> mean velocity of liquid, m s - 1 
Z axial coordinate, m 
IX parameter of Eqs (14) 

p parameter of Eqs (14) 
I' parameter of Eqs (14) 
, value of axial coordinate z, m 
l root of function J1 <"') Stokes stream function for mean flow, m3 S-1 
< Cl) auxiliary function, m s - 1 

Subscripts 

general summation index 
j general summation index 
r radial component 
z axial component 
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Other Designation 

I region below horizontal plane of impeller symmetry 
" region above horizontal plane of impeller symmetry 

REFERENCES 

1. Drbohlav J., Foit I., Kratky J.: Collect. Czech. Chem. Commun. 43, 696 (1978). 
2. Foit I., Obeid A., Brezina v.: Collect. Czech. Chem. Commun. 47, 226 (1'982). 
3. Placek J.: Thesis. Czechoslovak Academy of Sciences, Prague 1980. 
4. Ho§talek M., Fort 1.: Collect. Czech. Chem. Commun. 50, 930 (1985). 
5. Ho§talek M., Foit I.: Collect. Czech. Chem. Commun. 50, 2396 (1985). 
6. Jenson V. G., Jeffreys G. V.: Mathematical Methods in Chemical Engineering. Academic 

Press, London 1963. 
7. Korenev B. G.: Vvedenie v teoriyu Besselevykh/unktsii. Nauka, Moscow 1'971. 
8. Foit I., Placek J., Strek F., Jaworski Z., Karcz J.: Collect. Czech. Chem. Commun. 44, 684 

(1979). 
9. Foit I., Hrach M., Obeid A.: Sb. Vys. Sk. Chem.-Technol. Praze K 15,37 (1980). 

10. Fort I., Jaroch 0., Ho§talek M.: Collect. Czech. Chem. Commun. 42, 3555 (1977). 

Translated by J. Linek. 

Collection Czechoslovak Chem. Commun. [Vol. 52) [19871 

~-----... --------




